Real-Time Study of Noxious Gas Emissions and Combustion Efficiency of Blended Mixtures of Neem Biodiesel and Petrodiesel

نویسندگان

  • Avin Pillay
  • Arman Molki
  • Mohammed Khan
چکیده

Neem biodiesel is currently being explored as a future biofuel and was extracted chemically from the vegetable oil. Many of its properties are still under investigation and our aim was to study its noxious-gas emission profiles from blends with regular petroleum diesel. The distinct advantage of a real-time study is acquisition of in situ data on the combustion behavior of gas components with actual progression of time. Mixtures of neem biodiesel and petroleum diesel corresponding to neem additives of 5%, 10%, 15% and 25% were tested for combustion efficiency and emitted gases using a high-performance gas analyzer. Our study, therefore, investigated the overall efficiency of the combustion process linked to emissions of the following gases: O2, CO2, NO, NOx and SO2. The results for the 95/5% blend compared to the neat sample were most promising and showed no serious change in performance efficiency (<2%). NO/NOx emission trends displayed maxima/minima, suggestive of interconvertible chemical reactivity. Declining CO and SO2 emissions were consistent with rapid chemical conversion. The CO and SO2 concentrations fell well below the toxic atmospheric limits in less than 300 s. The results are generally encouraging for blends below 10%. The potential environmental impact of the study is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustainability of Aluminium Oxide Nanoparticles Blended Mahua Biodiesel to the Direct Injection Diesel Engine Performance and Emission Analysis

The study investigates the effect of aluminium oxide nanoparticles as an additive to Madhuca Indica (mahua) methyl ester blends on performance, emission analysis of a single-cylinder direct injection diesel engine operated at a constant speed at different operating conditions. The test fuels are indicated as B10A0.2, B10A0.4, B20A0.2, B20A0.4 and diesel respectively. The results indica...

متن کامل

Experimental Investigation Of Neem Methyl Esters As Biodiesel on C.I Engine

Diesel is a fossil fuel that is getting depleted at a fast rate. So an alternative fuel is necessary and a need of the hour. Neem oil, which is cultivated in India at large scales, has a high potential to become an alternative fuel to replace diesel fuel. Direct use of Neem oil cannot be done, as its viscosity is more than the diesel fuel, and hence affects the combustion characteristics. The N...

متن کامل

Sustainability of Aluminium Oxide Nanoparticles Blended Mahua Biodiesel to the Direct Injection Diesel Engine Performance and Emission Analysis

The study investigates the effect of aluminium oxide nanoparticles as an additive to Madhuca Indica (mahua) methyl ester blends on performance, emission analysis of a single-cylinder direct injection diesel engine operated at a constant speed at different operating conditions. The test fuels are indicated as B10A0.2, B10A0.4, B20A0.2, B20A0.4 and diesel respectively. The results indica...

متن کامل

Emission Characteristics of a Diesel Engine fueled with Diesel-biodiesel-JP-4 Blends

The main objective of this research is to study the effects of JP-4-biodiesel-diesel fuel blends and operating parameters on the emission characteristics of a CI engine. The experimental tests were performed on a four-cylinder DI diesel engine. The Mixture-RSM method was used to develop mathematical models based on experimental data. The results showed that with the increase of the biodiesel pr...

متن کامل

Reformer Gas Application in Combustion Onset Control of HCCI Engine

Homogenous charge compression ignition (HCCI) combustion is spontaneous multi-site combustion of a nominally premixed air/fuel mixture that exhibits high rate of pressure rise and short combustion duration. To avoid excessive pressure rise rate and knocking, HCCI engines are fueled with highly diluted mixture using a combination of excess air and/or EGR. HCCI combustion is attractive due to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013